Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Proc Natl Acad Sci U S A ; 119(25): e2201980119, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1890414

ABSTRACT

Endosomal sorting maintains cellular homeostasis by recycling transmembrane proteins and associated proteins and lipids (termed "cargoes") from the endosomal network to multiple subcellular destinations, including retrograde traffic to the trans-Golgi network (TGN). Viral and bacterial pathogens subvert retrograde trafficking machinery to facilitate infectivity. Here, we develop a proteomic screen to identify retrograde cargo proteins of the endosomal SNX-BAR sorting complex promoting exit 1 (ESCPE-1). Using this methodology, we identify Neuropilin-1 (NRP1), a recently characterized host factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as a cargo directly bound and trafficked by ESCPE-1. ESCPE-1 mediates retrograde trafficking of engineered nanoparticles functionalized with the NRP1-interacting peptide of the SARS-CoV-2 spike (S) protein. CRISPR-Cas9 deletion of ESCPE-1 subunits reduces SARS-CoV-2 infection levels in cell culture. ESCPE-1 sorting of NRP1 may therefore play a role in the intracellular membrane trafficking of NRP1-interacting viruses such as SARS-CoV-2.


Subject(s)
COVID-19 , Endosomes , Host-Pathogen Interactions , Neuropilin-1 , SARS-CoV-2 , COVID-19/metabolism , COVID-19/virology , CRISPR-Cas Systems , Endosomes/virology , Gene Deletion , Humans , Nanoparticles , Neuropilin-1/genetics , Neuropilin-1/metabolism , Proteomics , SARS-CoV-2/metabolism , Sorting Nexins/metabolism , Spike Glycoprotein, Coronavirus/metabolism
2.
PLoS One ; 17(2): e0263563, 2022.
Article in English | MEDLINE | ID: covidwho-1793526

ABSTRACT

Deletions frequently occur in the six accessory genes of SARS-CoV-2, but most genomes with deletions are sporadic and have limited spreading capability. Here, we analyze deletions in the ORF7a of the N.7 lineage, a unique Uruguayan clade from the Brazilian B.1.1.33 lineage. Thirteen samples collected during the early SARS-CoV-2 wave in Uruguay had deletions in the ORF7a. Complete genomes were obtained by Illumina next-generation sequencing, and deletions were confirmed by Sanger sequencing and capillary electrophoresis. The N.7 lineage includes several individuals with a 12-nucleotide deletion that removes four amino acids of the ORF7a. Notably, four individuals underwent an additional 68-nucleotide novel deletion that locates 44 nucleotides downstream in the terminal region of the same ORF7a. The simultaneous occurrence of the 12 and 68-nucleotide deletions fuses the ORF7a and ORF7b, two contiguous accessory genes that encode transmembrane proteins with immune-modulation activity. The fused ORF retains the signal peptide and the complete Ig-like fold of the 7a protein and the transmembrane domain of the 7b protein, suggesting that the fused protein plays similar functions to original proteins in a single format. Our findings evidence the remarkable dynamics of SARS-CoV-2 and the possibility that single and consecutive deletions occur in accessory genes and promote changes in the genomic organization that help the virus explore genetic variations and select for new, higher fit changes.


Subject(s)
COVID-19/virology , Cell Lineage , Gene Deletion , Genome, Viral , Open Reading Frames/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics , Adult , Aged , COVID-19/epidemiology , COVID-19/genetics , Child , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Uruguay/epidemiology
3.
J Virol ; 95(24): e0117421, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1691429

ABSTRACT

Defective interfering particles (DIPs) of influenza A virus (IAV) are naturally occurring mutants that have an internal deletion in one of their eight viral RNA (vRNA) segments, rendering them propagation-incompetent. Upon coinfection with infectious standard virus (STV), DIPs interfere with STV replication through competitive inhibition. Thus, DIPs are proposed as potent antivirals for treatment of the influenza disease. To select corresponding candidates, we studied de novo generation of DIPs and propagation competition between different defective interfering (DI) vRNAs in an STV coinfection scenario in cell culture. A small-scale two-stage cultivation system that allows long-term semi-continuous propagation of IAV and its DIPs was used. Strong periodic oscillations in virus titers were observed due to the dynamic interaction of DIPs and STVs. Using next-generation sequencing, we detected a predominant formation and accumulation of DI vRNAs on the polymerase-encoding segments. Short DI vRNAs accumulated to higher fractions than longer ones, indicating a replication advantage, yet an optimum fragment length was observed. Some DI vRNAs showed breaking points in a specific part of their bundling signal (belonging to the packaging signal), suggesting its dispensability for DI vRNA propagation. Over a total cultivation time of 21 days, several individual DI vRNAs accumulated to high fractions, while others decreased. Using reverse genetics for IAV, purely clonal DIPs derived from highly replicating DI vRNAs were generated. We confirm that these DIPs exhibit a superior in vitro interfering efficacy compared to DIPs derived from lowly accumulated DI vRNAs and suggest promising candidates for efficacious antiviral treatment. IMPORTANCE Defective interfering particles (DIPs) emerge naturally during viral infection and typically show an internal deletion in the viral genome. Thus, DIPs are propagation-incompetent. Previous research suggests DIPs as potent antiviral compounds for many different virus families due to their ability to interfere with virus replication by competitive inhibition. For instance, the administration of influenza A virus (IAV) DIPs resulted in a rescue of mice from an otherwise lethal IAV dose. Moreover, no apparent toxic effects were observed when only DIPs were administered to mice and ferrets. IAV DIPs show antiviral activity against many different IAV strains, including pandemic and highly pathogenic avian strains, and even against nonhomologous viruses, such as SARS-CoV-2, by stimulation of innate immunity. Here, we used a cultivation/infection system, which exerted selection pressure toward accumulation of highly competitive IAV DIPs. These DIPs showed a superior interfering efficacy in vitro, and we suggest them for effective antiviral therapy.


Subject(s)
Antiviral Agents/pharmacology , Drug Design/methods , Influenza A virus , Influenza, Human/virology , RNA, Viral , Animals , Cell Culture Techniques , Cell Line , Defective Interfering Viruses , Defective Viruses/genetics , Dogs , Gene Deletion , Genome, Viral , Humans , Immunity, Innate/drug effects , Madin Darby Canine Kidney Cells , Oscillometry , Real-Time Polymerase Chain Reaction , Viral Load/drug effects , Virus Replication/drug effects
4.
Org Lett ; 24(3): 804-808, 2022 01 28.
Article in English | MEDLINE | ID: covidwho-1632912

ABSTRACT

A chemical investigation of the filamentous fungus Aspergillus californicus led to the isolation of a polyketide-nonribosomal peptide hybrid, calipyridone A (1). A putative biosynthetic gene cluster cpd for production of 1 was next identified by genome mining. The role of the cpd cluster in the production of 1 was confirmed by multiple gene deletion experiments in the host strain as well as by heterologous expression of the hybrid gene cpdA inAspergillus oryzae. Moreover, chemical analyses of the mutant strains allowed the biosynthesis of 1 to be elucidated. The results indicate that the generation of the 2-pyridone moiety of 1 via nucleophilic attack of the iminol nitrogen to the carbonyl carbon is different from the biosynthesis of other fungal 2-pyridone products through P450-catalyzed tetramic acid ring expansions. In addition, two biogenetic intermediates, calipyridones B and C, showed modest inhibition effects on the plaque-forming ability of SARS-CoV-2.


Subject(s)
Aspergillus/metabolism , Pyridones/metabolism , Aspergillus oryzae/metabolism , Cytochrome P-450 Enzyme System/metabolism , Gene Deletion , Humans , Multigene Family/genetics , Polyketides/metabolism , Polyketides/pharmacology , Pyridones/pharmacology , Pyrrolidinones/metabolism , Pyrrolidinones/pharmacology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
5.
Anal Chem ; 93(49): 16350-16359, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1545571

ABSTRACT

The need for tools that facilitate rapid detection and continuous monitoring of SARS-CoV-2 variants of concern (VOCs) is greater than ever, as these variants are more transmissible and therefore increase the pressure of COVID-19 on healthcare systems. To address this demand, we aimed at developing and evaluating a robust and fast diagnostic approach for the identification of SARS-CoV-2 VOC-associated spike gene mutations. Our diagnostic assays detect the E484K and N501Y single-nucleotide polymorphisms (SNPs) as well as a spike gene deletion (HV69/70) and can be run on standard laboratory equipment or on the portable rapid diagnostic technology platform peakPCR. The assays achieved excellent diagnostic performance when tested with RNA extracted from culture-derived SARS-CoV-2 VOC lineages and clinical samples collected in Equatorial Guinea, Central-West Africa. Simplicity of usage and the relatively low cost are advantages that make our approach well suitable for decentralized and rapid testing, especially in resource-limited settings.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing , Equatorial Guinea/epidemiology , Gene Deletion , Humans , Mutation , Polymorphism, Single Nucleotide , SARS-CoV-2/classification
6.
Sci Rep ; 11(1): 22164, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1514425

ABSTRACT

The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 (ΔNS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of ΔNS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a ΔNS1 virus results in an antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that ΔNS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on ΔNS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.


Subject(s)
Influenza A virus/immunology , Influenza Vaccines/therapeutic use , Interferon Type I/immunology , Orthomyxoviridae Infections/prevention & control , Vaccines, Attenuated/therapeutic use , Viral Nonstructural Proteins/immunology , Adaptive Immunity , Animals , COVID-19/immunology , COVID-19/prevention & control , Chickens , Gene Deletion , Humans , Influenza A virus/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Nonstructural Proteins/genetics
7.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1481965

ABSTRACT

Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.


Subject(s)
Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , RNA, Viral/administration & dosage , Replicon , Viral Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Defective Viruses/genetics , Defective Viruses/immunology , Female , Gene Deletion , Genes, env , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/pathogenicity , RNA, Viral/genetics , RNA, Viral/immunology , Vaccines, DNA , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence/genetics , Virulence/immunology
8.
Nephron ; 146(2): 185-189, 2022.
Article in English | MEDLINE | ID: covidwho-1495753

ABSTRACT

Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy (TMA) affecting the kidneys. Compared with typical HUS due to an infection from shiga toxin-producing Escherichia coli, atypical HUS involves a genetic or acquired dysregulation of the complement alternative pathway. In the presence of a mutation in a complement gene, a second trigger is often necessary for the development of the disease. We report a case of a 54-year-old female, with a past medical history of pulmonary tuberculosis, who was admitted to the emergency service with general malaise and reduction in urine output, 5 days after vaccination with ChAdOx1 nCoV-19. Laboratory results revealed microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. Given the clinical picture of TMA, plasma exchange (PEX) was immediately started, along with hemodialysis. Complementary laboratory workup for TMA excluded thrombotic thrombocytopenic purpura and secondary causes. Complement study revealed normal levels of factors H, B, and I, normal activity of the alternate pathway, and absence of anti-factor H antibodies. Genetic study of complement did not show pathogenic variants in the 12 genes analyzed, but revealed a deletion in gene CFHR3/CFHR1 in homozygosity. Our patient completed 10 sessions of PEX, followed by eculizumab, with both clinical and laboratorial improvement. Actually, given the short time lapse between vaccination with ChAdOx1 nCoV-19 and the clinical manifestations, we believe that vaccine was the trigger for the presentation of aHUS in this particular case.


Subject(s)
Atypical Hemolytic Uremic Syndrome/etiology , Blood Proteins/genetics , ChAdOx1 nCoV-19/adverse effects , Complement C3b Inactivator Proteins/genetics , Gene Deletion , Homozygote , Female , Humans , Middle Aged
9.
Front Immunol ; 11: 604759, 2020.
Article in English | MEDLINE | ID: covidwho-1389169

ABSTRACT

Objective: To first describe and estimate the potential pathogenic role of Ig4 autoantibodies in complement-mediated thrombotic microangiopathy (TMA) in a patient with IgG4-related disease (IgG4-RD). Methods: This study is a case report presenting a retrospective review of the patient's medical chart. Plasma complement C3 and C4 levels, immunoglobulin isotypes and subclasses were determined by nephelometry, the complement pathways' activity (CH50, AP50, MBL) using WIESLAB® Complement System assays. Human complement factor H levels, anti-complement factor H auto-antibodies were analyzed by ELISA, using HRP-labeled secondary antibodies specific for human IgG, IgG4, and IgA, respectively. Genetic analyses were performed by exome sequencing of 14 gens implicated in complement disorders, as well as multiplex ligation-dependent probe amplification looking specifically for CFH, CFHR1-2-3, and 5. Results: Our brief report presents the first case of IgG4-RD with complement-mediated TMA originating from both pathogenic CFHR 1 and CFHR 4 genes deletions, and inhibitory anti-complement factor H autoantibodies of the IgG4 subclass. Remission was achieved with plasmaphereses, corticosteroids, and cyclophosphamide. Following remission, the patient was diagnosed with lymphocytic meningitis and SARS-CoV-2 pneumonia with an uneventful recovery. Conclusion: IgG4-RD can be associated with pathogenic IgG4 autoantibodies. Genetic predisposition such as CFHR1 and CFHR4 gene deletions enhance the susceptibility to the formation of inhibitory anti-Factor H IgG4 antibodies.


Subject(s)
Apolipoproteins/genetics , Atypical Hemolytic Uremic Syndrome/genetics , Autoantibodies/immunology , Complement C3b Inactivator Proteins/genetics , Complement Factor H/immunology , Immunoglobulin G4-Related Disease/genetics , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/pathology , Female , Gene Deletion , Genetic Predisposition to Disease/genetics , Humans , Immunoglobulin G/immunology , Immunoglobulin G4-Related Disease/immunology , Immunoglobulin G4-Related Disease/pathology , Middle Aged , Thrombotic Microangiopathies/immunology , Thrombotic Microangiopathies/pathology
10.
Blood ; 138(25): 2702-2713, 2021 12 23.
Article in English | MEDLINE | ID: covidwho-1365304

ABSTRACT

Multiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease. Herein, we demonstrate that the pore-forming protein gasdermin D (GSDMD) is active in neutrophils from septic humans and mice and plays a crucial role in NET release. Inhibition of GSDMD with disulfiram or genic deletion abrogated NET formation, reducing multiple organ dysfunction and sepsis lethality. Mechanistically, we demonstrate that during sepsis, activation of the caspase-11/GSDMD pathway controls NET release by neutrophils during sepsis. In summary, our findings uncover a novel therapeutic use for disulfiram and suggest that GSDMD is a therapeutic target to improve sepsis treatment.


Subject(s)
Extracellular Traps/genetics , Gene Deletion , Intracellular Signaling Peptides and Proteins/genetics , Multiple Organ Failure/genetics , Phosphate-Binding Proteins/genetics , Sepsis/genetics , Acetaldehyde Dehydrogenase Inhibitors/therapeutic use , Adoptive Transfer , Aged , Animals , Cells, Cultured , Disulfiram/therapeutic use , Female , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Male , Mice, Inbred C57BL , Middle Aged , Multiple Organ Failure/pathology , Multiple Organ Failure/therapy , Phosphate-Binding Proteins/antagonists & inhibitors , Sepsis/pathology , Sepsis/therapy
11.
Int J Infect Dis ; 108: 137-144, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1272471

ABSTRACT

OBJECTIVES: Our objective was to systematically investigate false-negative histidine-rich protein 2 rapid diagnostic tests (HRP2-RDT) in imported Plasmodium falciparum malaria cases from travelers to the UK and the Republic of Ireland (RoI). METHODS: Five imported malaria cases in travellers returning to the UK and RoI from East Africa were reported to the PHE Malaria Reference Laboratory as negative according to histidine-rich protein (HRP2)-RDT. The cases were systematically investigated using microscopic, RDT, molecular, genomic, and in in vitro approaches. RESULTS: In each case, HRP2-RDT was negative, whereas microscopy confirmed the presence of P. falciparum. Further analysis revealed that the genes encoding HRP2 and HRP3 were deleted in three of the five cases. Whole-genome sequencing in one of these isolates confirmed deletions in P. falciparum chromosomes 8 and 13. Our study produced evidence that the fourth case, which had high parasitemia at clinical presentation, was a rare example of antigen saturation ('prozone-like effect'), leading to a false negative in the HRP2-RDT, while the fifth case was due to low parasitemia. CONCLUSIONS: False-negative HRP2-RDT results with P. falciparum are concerning. Our findings emphasise the necessity of supporting the interpretation of RDT results with microscopy, in conjunction with clinical observations, and sets out a systematic approach to identifying parasites carrying pfhrp2 and pfhrp3 deletions.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Antigens, Protozoan/genetics , Diagnostic Tests, Routine , Gene Deletion , Humans , Ireland/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , United Kingdom/epidemiology
12.
PLoS One ; 16(3): e0248371, 2021.
Article in English | MEDLINE | ID: covidwho-1147457

ABSTRACT

Since its emergence in China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide including Pakistan. During the pandemic, whole genome sequencing has played an important role in understanding the evolution and genomic diversity of SARS-CoV-2. Although an unprecedented number of SARS-CoV-2 full genomes have been submitted in GISAID and NCBI, data from Pakistan is scarce. We report the sequencing, genomic characterization, and phylogenetic analysis of five SARS-CoV-2 strains isolated from patients in Pakistan. The oropharyngeal swabs of patients that were confirmed positive for SARS-CoV-2 through real-time RT-PCR at National Institute of Health, Pakistan, were selected for whole-genome sequencing. Sequencing was performed using NEBNext Ultra II Directional RNA Library Prep kit for Illumina (NEW ENGLAND BioLabs Inc., MA, US) and Illumina iSeq 100 instrument (Illumina, San Diego, US). Based on whole-genome analysis, three Pakistani SARS-CoV-2 strains clustered into the 20A (GH) clade along with the strains from Oman, Slovakia, United States, and Pakistani strain EPI_ISL_513925. The two 19B (S)-clade strains were closely related to viruses from India and Oman. Overall, twenty-nine amino acid mutations were detected in the current study genome sequences, including fifteen missense and four novel mutations. Notably, we have found a D614G (aspartic acid to glycine) mutation in spike protein of the sequences from the GH clade. The G614 variant carrying the characteristic D614G mutation has been shown to be more infectious that lead to its rapid spread worldwide. This report highlights the detection of GH and S clade strains and G614 variant from Pakistan warranting large-scale whole-genome sequencing of strains prevalent in different regions to understand virus evolution and to explore their genetic diversity.


Subject(s)
Genetic Variation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Aged, 80 and over , COVID-19/pathology , COVID-19/virology , Female , Gene Deletion , Humans , Male , Middle Aged , Mutation, Missense , Oropharynx/virology , Pakistan , Phylogeny , RNA, Viral/chemistry , RNA, Viral/isolation & purification , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Whole Genome Sequencing , Young Adult
13.
Biochem Biophys Res Commun ; 553: 25-29, 2021 05 14.
Article in English | MEDLINE | ID: covidwho-1147359

ABSTRACT

The current COVID-19 pandemic is caused by infections with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A sex-bias has been observed, with increased susceptibility and mortality in male compared to female patients. The gene for the SARS-CoV-2 receptor ACE2 is located on the X chromosome. We previously generated TP53 mutant pigs that exhibit a sex-specific patho-phenotype due to altered regulation of numerous X chromosome genes. In this study, we explored the effect of p53 deficiency on ACE2 expression in pigs. First, we identified the p53 binding site in the ACE2 promoter and could show its regulatory effect on ACE2 expression by luciferase assay in porcine primary kidney fibroblast cells. Later, quantitative PCR and western blot showed tissue- and gender-specific expression changes of ACE2 and its truncated isoform in p53-deficient pigs. We believe these findings will broaden the knowledge on ACE2 regulation and COVID-19 susceptibility.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Gene Expression Regulation , Organ Specificity , Sex Characteristics , Sus scrofa/metabolism , Tumor Suppressor Protein p53/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , Base Sequence , Binding Sites , COVID-19/metabolism , COVID-19/virology , Disease Models, Animal , Female , Fibroblasts , Gene Deletion , Male , Promoter Regions, Genetic/genetics , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , X Chromosome/genetics
14.
Biochem Biophys Res Commun ; 550: 8-14, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1101113

ABSTRACT

The SARS-CoV-2 Variant of Concern 202012/01 (VOC-202012/01) emerged in southeast England and rapidly spread worldwide. This variant is believed to be more transmissible, with all attention being given to its spike mutations. However, VOC-202012/01 has also a mutation (Q27stop) that truncates the ORF8, a likely immune evasion protein. Removal of ORF8 changes the clinical outset of the disease, which may affect the virus transmissibility. Here I provide a detailed analysis of all reported ORF8-deficient lineages found in the background of relevant spike mutations, identified among 231,433 SARS-CoV-2 genomes. I found 19 ORF8 nonsense mutations, most of them occurring in the 5' half of the gene. The ORF8-deficient lineages were rare, representing 0.67% of sequenced genomes. Nevertheless, I identified two clusters of related sequences that emerged recently and spread in different countries. The widespread D614G spike mutation was found in most ORF-deficient lineages. Although less frequent, HV69-70del and L5F spike mutations occurred in the background of six different ORF8 nonsense mutations. I also confirmed that VOC-202012/01 is the ORF8-deficient variant with more spike mutations reported to date, although other variants could have up to six spike mutations, some of putative biological relevance. Overall, these results suggest that monitoring ORF8-deficient lineages is important for the progression of the COVID-19 pandemic, particularly when associated with relevant spike mutations.


Subject(s)
COVID-19/transmission , COVID-19/virology , Epidemiological Monitoring , Gene Deletion , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/genetics , COVID-19/epidemiology , Codon, Nonsense , Codon, Terminator/genetics , Evolution, Molecular , Genes, Viral/genetics , Humans , Phylogeny , SARS-CoV-2/pathogenicity , Selection, Genetic , Time Factors , United Kingdom/epidemiology
15.
Cell Host Microbe ; 29(3): 489-502.e8, 2021 03 10.
Article in English | MEDLINE | ID: covidwho-1064930

ABSTRACT

The SARS-CoV-2 virus, the causative agent of COVID-19, is undergoing constant mutation. Here, we utilized an integrative approach combining epidemiology, virus genome sequencing, clinical phenotyping, and experimental validation to locate mutations of clinical importance. We identified 35 recurrent variants, some of which are associated with clinical phenotypes related to severity. One variant, containing a deletion in the Nsp1-coding region (Δ500-532), was found in more than 20% of our sequenced samples and associates with higher RT-PCR cycle thresholds and lower serum IFN-ß levels of infected patients. Deletion variants in this locus were found in 37 countries worldwide, and viruses isolated from clinical samples or engineered by reverse genetics with related deletions in Nsp1 also induce lower IFN-ß responses in infected Calu-3 cells. Taken together, our virologic surveillance characterizes recurrent genetic diversity and identified mutations in Nsp1 of biological and clinical importance, which collectively may aid molecular diagnostics and drug design.


Subject(s)
COVID-19/immunology , COVID-19/virology , Interferon Type I/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Nonstructural Proteins/genetics , A549 Cells , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Base Sequence , COVID-19/blood , Cell Line , Child , Child, Preschool , Chlorocebus aethiops , Female , Gene Deletion , Genomics , HEK293 Cells , Humans , Infant , Interferon Type I/blood , Interferon-beta/blood , Interferon-beta/metabolism , Male , Middle Aged , Molecular Epidemiology , Reverse Genetics , Vero Cells , Viral Nonstructural Proteins/immunology , Young Adult
16.
Emerg Microbes Infect ; 9(1): 2685-2696, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-933805

ABSTRACT

The newly emerged betacoronavirus, SARS-CoV-2, causes the COVID-19 pandemic since December 2019 with more than 35 million laboratory confirmed human infections and over one million deaths within nine months. The genome of SARS-CoV-2 continues to evolve during the global transmission with the notable emergence of the spike D614G substitution that enhances infectivity. Some of these viral adaptations may alter not only the infectivity but also viral pathogenesis. Continuous phylogenomic analysis of circulating viral strains and functional investigation of new non-synonymous substitutions may help to understand the evolution of virus, its virulence and transmissibility. Here we describe a loss of an accessory protein orf3b (57 amino acids) in current circulating SARS-CoV-2 strains, contributing around 24% of more than 100,000 complete viral genomes analysed. The loss of 3b is caused by the presence of an early stop codon which is created by an orf3a Q57H substitution. There is an increasing trend in the loss of orf3b which has reached 32% in May 2020. Geographically, loss of 3b is more prevalent in certain countries including Colombia (46%), USA (48%), South Korea (51%), France (66%), Saudi Arabia (72%), Finland (76%) and Egypt (77%). Interestingly, the loss of 3b coincides with the emergence of spike D614G substitution. In addition, we found that truncated orf3b has lost the interferon antagonism compared to the full-length orf3b, suggesting a loss of function by the newly adapted virus. Further investigation of orf3b deletion and spike D614G substitution on virulence and infectivity respectively will provide important insights into SARS-CoV-2 evolution.


Subject(s)
Gene Deletion , SARS-CoV-2/genetics , Viral Proteins/genetics , Amino Acid Sequence , Cells, Cultured , Humans , Interferons/antagonists & inhibitors , SARS-CoV-2/pathogenicity , Viral Proteins/chemistry , Viral Proteins/immunology
17.
Virus Res ; 291: 198222, 2021 01 02.
Article in English | MEDLINE | ID: covidwho-912664

ABSTRACT

The envelope glycoprotein (E) is the smallest structural component of SARS-CoVs; plays an essential role in the viral replication starting from envelope formation to assembly. The in silico analysis of 2086 whole genome sequences from India performed in this study provides the first observation on the extensive deletion of amino acid residues in the C-terminal region of the envelope glycoprotein in 34 Indian SARS-CoV-2 genomes. These amino acid deletions map to the homopentameric interface and PDZ binding motif (PBM) present in the C-terminal region of E protein as well as immediately after the reverse primer binding region as per Charité protocol in 26 of these genomes, hence, their detection through RT-qPCR may not be hampered and therefore E gene-based RT-qPCR would still detect these isolates. Eight genomes from the State of Odisha had deletion even in the primer binding site. It is possible that the deletions in the C-terminal region of E protein of these genomes are a result of adapting to a newer geographical area and host. The information on the clinical status was available only for 9 out of 34 cases and these were asymptomatic. However, further studies are indispensable to understand the functional consequences of amino acid deletion in the C terminal region of SARS-CoV-2 envelope protein in the viral pathogenesis and host adaptation.


Subject(s)
Coronavirus Envelope Proteins/genetics , SARS-CoV-2/genetics , Adult , Amino Acid Sequence , Computer Simulation , Coronavirus Envelope Proteins/immunology , Epitopes, B-Lymphocyte , Female , Gene Deletion , Genome, Viral , Humans , India , Male , Middle Aged , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification
18.
J Virol ; 94(14)2020 07 01.
Article in English | MEDLINE | ID: covidwho-840682

ABSTRACT

Autonomously replicating subgenomic Bungowannah virus (BuPV) RNAs (BuPV replicons) with deletions of the genome regions encoding the structural proteins C, ERNS, E1, and E2 were constructed on the basis of an infectious cDNA clone of BuPV. Nanoluciferase (Nluc) insertion was used to compare the replication efficiencies of all constructs after electroporation of in vitro-transcribed RNA from the different clones. Deletion of C, E1, E2, or the complete structural protein genome region (C-ERNS-E1-E2) prevented the production of infectious progeny virus, whereas deletion of ERNS still allowed the generation of infectious particles. However, those ΔERNS viral particles were defective in virus assembly and/or egress and could not be further propagated for more than three additional passages in porcine SK-6 cells. These "defective-in-third-cycle" BuPV ΔERNS mutants were subsequently used to express the classical swine fever virus envelope protein E2, the N-terminal domain of the Schmallenberg virus Gc protein, and the receptor binding domain of the Middle East respiratory syndrome coronavirus spike protein. The constructs could be efficiently complemented and further passaged in SK-6 cells constitutively expressing the BuPV ERNS protein. Importantly, BuPVs are able to infect a wide variety of target cell lines, allowing expression in a very wide host spectrum. Therefore, we suggest that packaged BuPV ΔERNS replicon particles have potential as broad-spectrum viral vectors.IMPORTANCE The proteins NPRO and ERNS are unique for the genus Pestivirus, but only NPRO has been demonstrated to be nonessential for in vitro growth. While this was also speculated for ERNS, it has always been previously shown that pestivirus replicons with deletions of the structural proteins ERNS, E1, or E2 did not produce any infectious progeny virus in susceptible host cells. Here, we demonstrated for the first time that BuPV ERNS is dispensable for the generation of infectious virus particles but still important for efficient passaging. The ERNS-defective BuPV particles showed clearly limited growth in cell culture but were capable of several rounds of infection, expression of foreign genes, and highly efficient trans-complementation to rescue virus replicon particles (VRPs). The noncytopathic characteristics and the absence of preexisting immunity to BuPV in human populations and livestock also provide a significant benefit for a possible use, e.g., as a vector vaccine platform.


Subject(s)
Pestivirus Infections/virology , Pestivirus/physiology , RNA, Viral , Viral Envelope Proteins/metabolism , Virus Replication , Gene Deletion , Gene Expression , Genes, Reporter , Genetic Engineering , Host-Pathogen Interactions , Pestivirus Infections/immunology , Replicon , Viral Envelope Proteins/genetics , Virion , Virus Assembly
19.
Lancet ; 396(10251): 603-611, 2020 08 29.
Article in English | MEDLINE | ID: covidwho-719049

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with a 382-nucleotide deletion (∆382) in the open reading frame 8 (ORF8) region of the genome have been detected in Singapore and other countries. We investigated the effect of this deletion on the clinical features of infection. METHODS: We retrospectively identified patients who had been screened for the ∆382 variant and recruited to the PROTECT study-a prospective observational cohort study conducted at seven public hospitals in Singapore. We collected clinical, laboratory, and radiological data from patients' electronic medical records and serial blood and respiratory samples taken during hospitalisation and after discharge. Individuals infected with the ∆382 variant were compared with those infected with wild-type SARS-CoV-2. Exact logistic regression was used to examine the association between the infection groups and the development of hypoxia requiring supplemental oxygen (an indicator of severe COVID-19, the primary endpoint). Follow-up for the study's primary endpoint is completed. FINDINGS: Between Jan 22 and March 21, 2020, 278 patients with PCR-confirmed SARS-CoV-2 infection were screened for the ∆382 deletion and 131 were enrolled onto the study, of whom 92 (70%) were infected with the wild-type virus, ten (8%) had a mix of wild-type and ∆382-variant viruses, and 29 (22%) had only the ∆382 variant. Development of hypoxia requiring supplemental oxygen was less frequent in the ∆382 variant group (0 [0%] of 29 patients) than in the wild-type only group (26 [28%] of 92; absolute difference 28% [95% CI 14-28]). After adjusting for age and presence of comorbidities, infection with the ∆382 variant only was associated with lower odds of developing hypoxia requiring supplemental oxygen (adjusted odds ratio 0·07 [95% CI 0·00-0·48]) compared with infection with wild-type virus only. INTERPRETATION: The ∆382 variant of SARS-CoV-2 seems to be associated with a milder infection. The observed clinical effects of deletions in ORF8 could have implications for the development of treatments and vaccines. FUNDING: National Medical Research Council Singapore.


Subject(s)
Coronavirus Infections/virology , Gene Deletion , Genome, Viral/genetics , Pneumonia, Viral/virology , Adult , Aged , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Humans , Hypoxia/etiology , Hypoxia/therapy , Middle Aged , Open Reading Frames , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Prospective Studies , Respiratory Therapy , SARS-CoV-2 , Severity of Illness Index , Singapore/epidemiology , Virus Replication
20.
Emerg Microbes Infect ; 9(1): 1900-1911, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-695197

ABSTRACT

The SARS-CoV-2 spike (S) protein, the viral mediator for binding and entry into the host cell, has sparked great interest as a target for vaccine development and treatments with neutralizing antibodies. Initial data suggest that the virus has low mutation rates, but its large genome could facilitate recombination, insertions, and deletions, as has been described in other coronaviruses. Here, we deep-sequenced the complete SARS-CoV-2 S gene from 18 patients (10 with mild and 8 with severe COVID-19), and found that the virus accumulates deletions upstream and very close to the S1/S2 cleavage site (PRRAR/S), generating a frameshift with appearance of a stop codon. These deletions were found in a small percentage of the viral quasispecies (2.2%) in samples from all the mild and only half the severe COVID-19 patients. Our results suggest that the virus may generate free S1 protein released to the circulation. We suggest that natural selection has favoured a "Don't burn down the house" strategy, in which free S1 protein may compete with viral particles for the ACE2 receptor, thus reducing the severity of the infection and tissue damage without losing transmission capability.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Genome, Viral/genetics , Pneumonia, Viral/virology , Quasispecies/genetics , Respiratory Tract Infections/virology , Spike Glycoprotein, Coronavirus/genetics , Adult , Aged , COVID-19 , Computational Biology , Female , Gene Deletion , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Pandemics , RNA Cleavage , SARS-CoV-2 , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL